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A stochastic averaging procedure of strongly non-linear oscillators subject to external and
(or) parametric excitations of both harmonic and white-noise forces is developed by using
the so-called generalized harmonic functions. The procedure is applied to a Duffing
oscillator with hardening stiffness under both external harmonic excitation and external and
parametric excitations of white noises. The averaged Fokker-Planck-Kolmogrov equation
is solved by using the path integration method. Based on the stationary joint probability
density of amplitude and phase obtained by using the stochastic averaging and the path
integration, the stochastic jump of the Duffing oscillator under combined harmonic and
white-noise excitations and its bifurcation as the system parameters (frequency ratio,
strength of the non-linearity, amplitude of harmonic excitation and intensity of white noise)
change are examined for the first time.
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1. INTRODUCTION

The stochastic averaging method is a powerful approximate technique for the prediction of
response, decision of stability and estimation of reliability of linear or non-linear
conservative oscillators subject to lightly linear and (or) non-linear dampings and external
(additive) and (or) parametric (multiplicative) excitations of the wideband random
processes. It has been extensively used in theoretical investigation and engineering
application of random vibration. Comprehensive reviews attesting the success of the
stochastic averaging method in random vibration have been written by Roberts and Spanos
[2] and by Zhu [2, 3]. The success of the stochastic averaging method is mainly due to its
two advantages: the equations of motion of a system are much simplified and the
dimensions of the equation is often reduced while the essential behavior of the system is
retained; the averaged response is a diffusive Markov process and the method of
Fokker-Planck-Kolmogorov (FPK) equation can be applied.
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The classical stochastic averaging method has two widely used versions. One is often
called the standard stochastic averaging or Stratonovich stochastic averaging. This version
of the stochastic averaging method was initially developed by Stratonovich [4] and later
justified mathematically by Khasminskii [5]. It can be applied to multi-degree-of-freedom
(m.d.o.f.) quasi-linear random systems, i.e., linear conservative oscillators subject to lightly
linear and (or) non-linear dampings and weakly external and (or) parametric excitations of
wideband random processes. The other version is usually called the stochastic averaging of
energy envelope or quasi-conservative averaging. It was initially proposed by Khasminiskii
[6] and Landa and Stratonovich [7]. Later, this version of the stochastic averaging
equation was rederived by Zhu [8] and Zhu and Lin [9] based on a theorem due to
Khasminskii [ 107, and possible change of the energy envelope due to the conservative part
of the Wong-Zakai correction terms was taken into account. This version of the stochastic
averaging method is applicable to single-degree-of-freedom (s.d.o.f.) non-linear conservative
oscillators subject to lightly linear and (or) non-linear dampings and weakly external and
(or) parametric excitations of Gaussian white noises. Later, it was extended to the case of
non-white wideband random excitations by Roberts [11] and Cai [12, 13].

The classical stochastic averaging method can only be applied to s.d.o.f. strongly
non-linear systems. In recent years, the stochastic averaging method for quasi-Hamiltonian
systems has been developed [14-16]. The method can be applied to m.d.o.f. integrable,
partially integrable and completely integrable Hamiltonian systems subject to lightly linear
and (or) non-linear dampings and external and (or) parametric excitations of Gaussian
white noises. It has been shown that the number of averaged It6 equations (or the
dimension of the averaged FPK equation) is equal to the number of independent integrals
of motion in involution and the number of resonant relations of the associated Hamiltonian
systems. The technique for obtaining the exact stationary solution to the averaged FPK
equations was also developed. The stochastic averaging method for quasi-Hamiltonian
systems has been applied to study the stochastic stability, stochastic bifurcation, reliability
and optimal non-linear stochastic control of quasi-Hamiltonian systems [16-26].

Engineering systems are often subjected to combined harmonic and random excitations.
The classical stochastic averaging method has been applied to linear conservative
oscillators subject to light damping and combined harmonic and wideband random
excitations to obtain the conditions of moment stability [27-31] or to obtain the stationary
probability density [32, 33]. To the authors’ knowledge, there is no stochastic averaging
method available which can be applied to non-linear conservative oscillators subject to
light damping and combined harmonic and random excitations.

In the present paper, the stochastic averaging method for s.d.o.f. strongly non-linear
oscillators with light damping under external and (or) parametric excitations of both
harmonic and white-noise forces is developed. The method is then applied to a Duffing
oscillator with hardening stiffness under both external harmonic excitation and external
and parametric excitations of white noises. The averaged FPK equation is solved by using
the path integration technique. The stationary joint probability density of amplitude and
phase obtained by using the stochastic averaging and path integration is used to examine
the stochastic jump of the Duffing oscillator under combined harmonic and white-noise
excitations and its bifurcation as the system parameters change.

2. GENERALIZED HARMONIC FUNCTIONS

Consider the free vibration of a non-linear conservative oscillator whose equation of
motion is of the form

X+ g(x)=0. (1)
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The first integral (energy integral) of oscillator (1) is
3% +u(x) = H, 2

where H is the total energy of the oscillator while
o) = | gt ()

is the potential energy. g(x) and v(x) are assumed to satisfy the following conditions: (i)
2(0) = 0; (i1) all the trajectories in domain U of phase plan (x, X) are periodic surrounding
(0, 0). The periodic solution of equation (1) in U can be written as [34]

x(t) = acos ¢(t) + b, 4)
X(t) = — av(a, ¢)sin ¢(1), )
where
@(1) = () + 0, (6)
v, (P):g:f[u(mb)z—g(?cow +b)], o
dt a“sin” ¢
a and b are constants and related to H as follows
v@@+b)y=v(—a+b)=H, (8)

cos ¢(t) and sin ¢(t) are called generalized harmonic functions [34]. Obviously, a is the
amplitude of oscillation, v(a, ¢) is the instantaneous frequency of oscillation and 6 is the
phase angle. Expanding v~ ! into Fourier series

V@ 0) = Col@) + Y. Cyla)cosng ©)

n=1

and then integrating equation (7) with respect to t yield
t=Cola)t+ ), . C,(a)sin no. (10)
n=1

Further integrating equation (10) with respect to 7 from 0 to 2x leads to the averaged period
T (a) = 2nCy(a) (11)

and the averaged frequency

(12)
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of the oscillator. The integration constants in equations (10)—(12) have been neglected. Note
that Fourier series in equations (9) and (10) converge rapidly and can be approximated with
a few terms in practical calculation.

3. STOCHASTIC AVERAGING PROCEDURE

Consider the response of oscillator (1) subject to light damping and external and (or)
parametric excitations of both harmonic and white-noise forces. The equation of motion of
the system is of the form

X +g(X) = of (X, X, Q1) + e"2h(X, X)W,(t), k=1,2,...,m, (13)

where ¢ is a small parameter, f(X, X, Qt) represents linear and (or) non-linear dampings
and external and (or) parametric harmonic excitation with frequency Q, hy(X, X)W,(t)
represent external and (or) parametric excitations of Gaussian white noises W, (t) with
intensities 2Dy,.

The system governed by equation (13) without white-noise excitation has been studied by
Xu and Cheung [34]. In the case of resonance, the response is a harmonic motion. If the
added white-noise excitation does not destabilize the system, then its response will be
random spread of periodic motion, i.e., periodic non-stationary process [4]. Thus, the
solution of system (13) in U is assumed to be of the following form:

X(t)= Acos (1) + B, (14)
X(t) = — Av(A, ®)sin d(1), (15)

where
(1) =1(t) + O(1), (16)

(17)

dt 2[v(A + B) — v(Acos ® + B)]
A, P)=—=
V4, 9) dt \/ A*sin® @

and A, B, @, ©, T and v are all random processes. Differentiating equation (14) with respect
to t and equating the resultant to equation (15) yield

A(cos® + h) — OAsin® = 0, (18)
where

_dB_g(=A+B)+g(d4+B)
h_dA_g(—A+B)—g(A+B)' 19

Differentiating equation (15) with respect to t and substituting the resultant into equation
(13) leads to

. 0 . 0
ASv(A, ®)sin @] + A— [v(A4, )sinP] p + @ — [v(A4, P)sin @]
0A 0D
= —¢f(Acos® + b, —Av(A, ®)sin @, Qt) — ' *h(Acos D + B, —Av(A4, ®)sin @) W, (¢).

(20)
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Solving equations (18) and (20), one obtains

dA
o eF (A, @, Q1) + ¢'2H (4, )W, (1),
4o (21)
dr eFs(A, @, Q1) + ¢'2H (A, )W (1),
where
4 f(Acos® + B, — Av(A, ®)sin &, Qt)v(A, @)sin @
= — —Av v
' g(A+B)(1 +h) ’ ’ ’ ’ ’
F. 4 f(Acos® + B, —Av(A, ®)sin &, Qt)v(A, ®)(cos P + h)
= —Av v
2 2(A + B)(1 + h) ’ ’ ’ ’ ’
4 (22)

Hy=———h(Acos® + B, —Av(A4, ®)sin @, Qt)v(A, ®)sin P,
Ty L (4, @)sin @, Q0)v(4, P)

1

Ao = 2(A + B)(1 + h)

hi(Acos @ + B, —Av(A, ®)sin &, Qt)v(A4, @)(cos P + h).

Equation (21) can be modelled as Stratonovich stochastic differential equation and then
transformed into Itd stochastic differential equation by adding Wong-Zakai correction
terms [35]. The result is

dA = em (A, ®, Qt)dt + ¢'%6,(A, D)dB,(1),

(23)
dO = em, (A, @, Qt)dt + £'%6,,(A, ®)dB,(1),
r=1,2,....2m,
where B,(t) are unit Wiener processes,
=F,+D i +D i
m; = I ki oA 11 Kl oD 215
2m
bij = Z 0y 0js = 2DleikHjla (24)
r,s=1

Lj=12 kl=12,..,m r,s=12,..,2m

System (13) has harmonic excitation and so two cases can be identified: resonant case and
non-resonant case. The resonant case is more interesting and considered in the following.
Assume that

Q

w(a

+ éo, (25)

AS IS
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where p and q are relatively prime positive integers and ¢ = O(1) is the detuning parameter.
In this case equation (10) becomes

1
=10 +wi-40+0Y > C(4)sinnd. (26)
14 p n=1 n
Introduce new variable I" such that
q
I' =¢ot —- 0. (27)
p
Then equation (26) can be rewritten as
Q=Y +T, (28)
where
1
Y= (4, P) = 1% 0 +Q Y —C\(d)sinnd (29)
n=1

with the transformation from @ to I' as defined by equation (27), equation (23) can be
rewritten as

dA = emy (A, @, ¥ + INdt + &'%6,(A, ®)dB,(1),
q Q q q (30)
dr = |:8m2(A, o,V + F)( - > + < — ) v(A, <15):| dt — "2 2 g,,(4, ®)dB, (1),
p w(a) p p
r=1,2,...,2m.
The drift and diffusion coefficients in It6 equation (30) are functions of slowly varying

processes 4 and I" and rapidly varying process ®. Averaging them with respect to @ yields
the following averaged It6 equations:

dA = ey (A, T dt + &'?G,(A)dB,(1),

(31)
dI’ = em,(A, I dt + ¢'/%6,,(A)dB,(t), r=1,2,...,2m,
where
my =<my(4, 2, ¥ + 1))y,
A, D Q
i = <m2<A, ¢,W+F><—ﬂ>+v( : )<——@>>, (32)
P € w(@) p)/e

2m

2m
Eijz Z 5ir5'js=<bij><p=< Z Girajs>s Lj=12, r,s=12,....2m
@

r,s=1 r,s=1

and { ), represents the averaging with respect to @ from 0 to 27.
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The averaged FPK equation associated with averaged It6 equation (31) is
dop 0 0 1 0% _ 0% 102 _
—=¢| —— (mp) —=— (m ~—— (b — (b ~— (b 33
o F[ a(md’) oy (mzp)+26a2( 11p)+6a(3y( 12p)+26y2( 22p) |, (33)

where p = p(a, y, t|ay, 7o) is the transition probability density of amplitude A and phase I'.
The initial condition of FPK equation (33) is

p = 0d(a—ag)o(y — 7o), t=0. (34)

Since p(a, y, t|ao, yo) is a periodic function of y, the boundary condition of FPK equation
(33) with respect to y is

P(G,V + 27’!7’C,t|ao, ’))0) =p(a: %ﬂao» VO) (35)
As for the boundary condition of FPK equation (33) with respect to a, one is
p = finite at a = 0. (36)

That means a = 0 is a reflecting boundary. The other boundary condition depends on the
behavior of the non-linear oscillator in equation (13) with ¢ = 0. In the simplest case, where
all the solutions of oscillator (13) with ¢ =0 in whole phase plane (x, xX) are periodic
surrounding (0, 0), the other boundary condition of FPK equation (33) with respect to a is

0
p,afZ—»O, as a — oo. (37)

4. AVERAGED EQUATION FOR DUFFING OSCILLATOR

As an application of the stochastic averaging procedure developed in the last section, in
this section we derive the averaged equations for a Duffing oscillator with hardening
stiffness subject to lightly linear damping and combined externally harmonic excitation and
externally and parametrically white-noise excitations. The equation of motion of the system
is of the form

X +0’X +aX?®= — BX + Ecos Qt + W(t) + XW,(¢), (38)

where o, f and E are positive constants representing the strength of non-linearity, the
coefficient of damping and the amplitude of harmonic excitation, respectively, W, (t) and
W ,(t) are independent Gaussian white noises in the sense of Stratonovich with intensity 2D,
and 2D, respectively. 5, E and D; are assumed to be of the same order of &. For such
a Dulffing oscillator,

g(x) = w?x + ax?, v(x) = 0?x%/2 + ax*/4, b=h=0 (39)

and

v Ya, ) = [(w* + 30a?/4)(1 + Acos2¢)]

I
M8

C,.(a) cos 2ne,

n=0
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2n

1
Carlt) = - | v (0 phcos 2np dp, (0

0
w(a) = 1/Co(a),
4 =5aA*(0* + 3 aAd?).
Consider the case of primary resonance
Qlw(a) =1+ o, 41)
where ¢ is of the same order of ¢. Introducing transformations
X(t)=Acos®(t), X(t)= — Av(A, P)sin P, (42)

where @ is defined by equation (16), and following the derivation from equation (18) to
equation (21), one obtains

dA
E =f1(A: djz Qt) + gll(A’ (D)Wl(t) + ng(Aa (D)Wz(t)y
4o (43)
dr =f2(4, D, Qt) + g1 (A, D)W (1) + g22(4, D)W, (1),
where
A . .
fi=— m [BAv(A, ®)sin ® + E cos Qt]v(A, ®)sin &,
g
1
fh=— m [BAv(A, ®)sin ® + Ecos Qt]v(A, ®)cos P,
g
= ——— (A, ®)sin P = ——— (A, P)sin P (0]
811 g(A)v( , P)sin @, 812 g(A)V( , @)sin @ cos P,
= ! (a, D) () = 4 (A, ®)cos* P
821 = g(A)va, cos D, 922 = g(A)V , ®)cos” P.

Equation (43) can be modelled as the following It6 stochastic differential equation by
adding Wong-Zakai correction terms [35]

d4 = al(Aa (ps Qt) de + ’/Ilr(Aa (I)) dBr(t)a

(45)
dO = a,(A, &, Qt)dt + n,.(A, ®)dB,(t), r=1,2,
where
_ 0gix 0gin
a; = f; + Dk<g1kaA + gzk% )
(46)

2
bij = Z Nirljs = 2Dkgikgjk, ij,k=1,2.

r,s=1
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As in equation (27), introducing new variable
I'=o0t1—0 47)
equation (45) is transformed into
d4d=a,(A, @,V + I')dt + n,.(4, ?)dB,(t),
dI' =[—a,(4, D, ¥ +T') + (Q/w(a) — 1)v(A, P)]dt (48)
— 12.(4, ?)dB,(t), r=1,2.
Finally, applying the deterministic averaging to equation (48) with respect to @, one obtains
dA = a,(A, I dt + 77,,(A)dB,(1),
(49)
dI' = a,(A4, I') dt + #,.(4) dB,(¢), r=1,2,

where

a; = — BA(w* + 52A4%/8)/2(w* + 2A?) + Esin F<V(A, ®)sin @

X sin(di +Q i % C,(a)sin n<I>>> /(a)2 + 0A?)

—aDA(Bw?* + 30Ad?/2)/4(w* + aA?)? + D{(w* + TaA*/8)2A(w* + 0A?)*

+ Do’ A(w? + 2 A?/2)/8(w* + aA?)® + D, A(w? + TaA?/8)/4(w* + aA?),

z 1
a, = Ecos F<V(A, P) cos(Dcos(tp + Q) . C,(A)sin n<1)>> /A(a)2 + aA?)
= [

n=1

+ [QCo(A) — 1]<v(4, D)),

<
=
=
Il
P
1D

ﬁlrﬁls
1

r,

Dy (0? + 50A42/8)/(? + aA?)? + Dy A (? + 30A2/4)/4(w?* + aA?),
2

522: Z N2rM2s

r,s=1

= Dy (0 + TaA?/8)/A*(w* + aA*)* + 2D, (3w?/8 + 110A4?/32)/(w* + aA?)?,

2
biy=by = Z 01,025 =0. (50)

r,s=1
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In the derivation of a;, the following formula has been used:

d A 20A
dA(g(A))Z _(coz—l—otAz)z' (51)

The averaged FPK equation associated with 1td6 equation (49) is

w0 0 10 10

= — 2 (@p) — — (@D) + =~ (b11P) + =~ (b22D). 2
ot a (aip) oy (azp) + 2 0d (b11p) + 257 (b22p) (52)

The initial condition is the same as in equation (34) and the boundary conditions are the
same as in equations (35)—(37).
In the special case of & = D, = 0, system (38) is linecar and equation (49) is reduced to

dA = (— PAJ2 + EsinT' 20 + D,/2wa)dt + (D}/?/w)dB, (1),
(53)
dI' = (Ecos I'/2wA + (Q — w))dt + (DY?/wA)dB, (b).

Applying the solution procedure proposed in reference [33], one obtains the following exact
stationary solution to the averaged FPK equation:

p(a,y) = Cexp[— (Bw?/2Dy)a* + (Ea/w)(scosy + Dy sinp/w?)/(s* + (D1/w?)?], (54)
where C is a normalization constant and

s =2D(w — Q)/pw?. (55)

5. SOLUTION OF AVERAGED FPK EQUATION

Averaged FPK equation (33) is a two-dimensional linear elliptic partial differential
equation with variable coefficients and generally can be solved only numerically. The
method of path integration is one such numerical procedure and it is appropriate for the
present purpose. Early application of the path integration to solving FPK equation was
made by Wehner and Wolfer [36]. Recent improvements of the technique can be found in
references [37, 38].

[A, I']" in equation (31) is a two-dimensional vector diffusive Markov process. Dividing
time interval [0, ] into N short subintervals of length 7, the solution to FPK equation (33)
with initial condition (34) can be represented as

N
pla,p,t) =[] J p(a®, y®, t[a" =P, ") da" " dy“ ™Y p(ao, ), (56)
14

i=1

where ty = t,a™ = a,y™ = y; p(a®, y?, 1]a" ", y*~ V) is the so-called short time transition
probability density (STTPD); V is the domain of plane («, y) defined by the problem in hand.
In the method of path integration, STTPD is approximated by a Gaussian probability
density. Several different forms of Gaussian probability density have been proposed for
STTPD and a simple one in reference [36] is used in the present paper. For a fixed point
(@?,7?) at time t;, the point (a“~",y*"V) at time t;_; is determined by using the
Runge-Kutta—Maruyma approximation [38].
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Figure 1. Stationary probability density p(a, y) of degenerated linear oscillator under combined harmonic and
white-noise excitations.a =0, f =01, w = Q = 1-0, E = 0-1, D; = 0-004, D, = 0-0 (a) by the stochastic averaging
and path integration; (b) exact stationary solution (58) of averaged FPK equation; (c) from the digital simulation of
original equation of motion.

The computer program of the path integration developed by the present authors is first
used to calculate the stationary solution of the averaged FPK equation associated with 1t6
equation (53). The result is shown in Figure 1(a). To check the accuracy of the stochastic
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averaging and path integration, the exact stationary solution (54) of the averaged FPK
equation and the digital simulation of original equation (38) with o = 0 are also obtained
and are shown in Figure 1(b) and 1(c) respectively. It is seen from Figure 1 that the
stochastic averaging and path integration together yield satisfactory result.

6. STOCHASTIC JUMP AND BIFURCATION OF DUFFING OSCILLATOR

It is well known that a Duffing oscillator with hardening stiffness subject to harmonic
excitation may exhibit the phenomenon of sharp jumps in amplitude [39]. The jump
phenomenon may also occur when the Duffing oscillator is subjected to narrowband
random excitation [40] and this stochastic jump phenomenon was the subject of many
publications since early 1960s (see, for example, the list of references in reference [41]). To
the author’s knowledge, the jump phenomenon of Duffing oscillator under combined
harmonic and white-noise excitations has not been reported in the literature. In this section,
this stochastic jump and its bifurcation as the system parameters change are examined

pla.y)

pla,y)
oeTs

o9

(a)

pla.y)

"“ \
i,
1 ‘\\&\\\\\m\» :

J \
XN
AT
a ":’:‘ S

(b)

Figure 2. Stationary probability density p(a, y) ((a) and (b)) and sample functions ((c) and (d)) of system (38),
0=03, =01, =10, Q=12, E=02, D, =0004, D, =0-0 (a) by the stochastic averaging and path
integration; (b) from the digital simulation of equation (38); (c) displacement; (d) velocity.
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Figure 2. Continued.

based on the stationary solution to averaged FPK equation (52) obtained by using the path
integration technique and the results from the digital simulation of original equation (38).

The deterministic jump behavior of a Duffing oscillator under pure harmonic excitation
is associated with the fact that, over a range of the values of the ratio of excitation frequency
to the natural frequency of the degenerated linear oscillator, the amplitude response is
triple-valued. Among the three values of amplitude, two are stable while the other is
unstable. Jump occurs between the two stable amplitudes as the frequency ratio changes
slowly and passes through the extreme values of the frequency ratio interval of triple-valued
amplitude. So, amplitude response curve (amplitude versus frequency ratio) is enough to
study the deterministic jump phenomenon. The stochastic jump of Duffing oscillator under
narrowband random excitation, on the other hand, is essentially a transition of the response
from one more probable motion to another or vice versa [41]. A more probable motion is
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represented by a peak of the stationary joint probability density of displacement and
velocity (or, of amplitude and phase). Jumps may occur when the probability density has at
least two peaks (bimodal). So, the stochastic jump phenomena can be examined by using the
stationary joint probability density of displacement and velocity (or, of amplitude and
phase). It should be noted that the variance of a stationary response is unique and the
stochastic jump phenomena cannot be explained by using triple-valued variance. In the
following, it will be shown that the stochastic jump of a Duffing oscillator under combined
harmonic and white-noise excitations can be examined in a similar way.

A typical response exhibiting stochastic jump phenomenon of a Duffing oscillator under
combined harmonic and white-noise excitations is shown in Figure 2, where (a) and (b) are
the stationary joint probability densities of amplitude and phase obtained from solving the
averaged FPK equation (52) by using the path integration technique and from the digital
simulation of original equation (38), respectively, and (c) and (d) are the sample functions of
the displacement and velocity, respectively, from the digital simulation. It is is seen that the
two probability densities are in good agreement and they are both bimodal. It implies that
there are two more probable motions in the response of the Duffing oscillator and
stochastic jumps may occur. This is verified by the sample functions of displacement and
velocity. Taking expectation of equation (38) leads to the equation for the same Duffing
oscillator under pure harmonic excitation. So, it can be expected that the two peaks of the
stationary probability density are located on the amplitude response curve of the Duffing
oscillator under pure harmonic excitation, as indicated by curve B in Figure 3. On the other
hand, the stochastic jumps of a Duffing oscillator under combined harmonic and
white-noise excitations can be regarded as random spread of the deterministic jump of the
same oscillator under pure harmonic excitation. However, the deterministic and stochastic
jump phenomena have significant difference. The deterministic jump occurs only at the two
extreme values of the frequency ratio interval to triple-valued amplitude. The jump from
upper branch to lower branch of amplitude response curve occurs only at the right extreme

25

Figure 3. Amplitude response curve of Duffing oscillator under pure harmonic excitation, curve A: w = 1-0,
0=03,p=01,E=015curve B:w=10,2=03, =01, E=02;curve C. o =10, =02, f =01, E=02;
curve D: o = 10,0 =03, f =01, E=03; curve E: 0 = 1:0, « = 05, f =01, E = 0-2.
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Figure 4. Stationary probability density p(a,y) of system (38). « =03, f =01, o =10, =12, E=02,
D; =0002, D, =00 (a) by the stochastic averaging and path integration; (b) from the digital simulation of
equation (38).

value while the backward jump occurs only at the left extreme value. On the other hand, the
stochastic jump may occur at any frequency ratio within this interval and jumps may occur
back and forth.

As in the deterministic case, whether stochastic jump occurs depends on the system’s
parameters, such as the intensity of white noise, the frequency ratio, the amplitude of
harmonic excitation and the strength of non-linearity. Since the occurence of stochastic
jump is related to bimodal probability density, we call the appearance or disappearance of
stochastic jump as the system’s parameters change the bifurcation of the stochastic jump. In
the following, we will examine the bifurcation of the stochastic jump as the system’s
parameters change.

First, let us examine the effect of the intensity of white noise on the stochastic jump. In
Figures 4 and 5 are shown the joint probability densities of the same system as that shown
in Figure 2 except the intensity of white noise. In all three cases shown in Figure 2, 4 and 5,
the joint probability densities are bimodal and so jumps may occur, however, there is still
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Figure 5. Stationary probability density p(a,y) of system (38). «=03, =01, 0w=10, Q=12,
E =02,D, =001, D, = 0-0 (a) by the stochastic averaging and path integration; (b) from the digital simulation of
equation (38).

slight difference among them. At smaller intensity, the two peaks are more well separated,
jumps occur more rarely and the most probable motion is around the lower branch of the
amplitude response curve. At higher intensity, on the other hand, the two peaks
connect and even merge, jumps occur more frequently and the most probable motion is
around the upper branch of the amplitude response curve. It can be expected that as the
intensity of white noise approaches to zero, the stochastic jump approaches the
deterministic jump.

Second, let us examine the effect of the frequency ratio on the stochastic jump. In
Figures 6 and 7 are shown the joint probability densities of the same system as that shown
in Figure 2 except the frequency ratio. They are both unimodal and so no jump may occur.
This is because the values of frequency ratio in these two cases are well off the interval of
triple-valued amplitude, see curve B in Figure 3. The two joint probability densities in
Figures 6 and 7 represent the most probable motion around the lower and upper branches
of the amplitude response curve respectively. Thus, the bifurcation of the stochastic jump of
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Figure 6. Stationary probability density p(a,y) of system (38). « =03, f =01, ® =10, 2 =13, E =02,
D, = 0004, D, =0-0 (a) by the stochastic averaging and path integration; (b) from the digital simulation of
equation (38).

a Duffing oscillator under combined harmonic and white-noise excitations as the frequency
ratio changes can be roughly estimated based on the amplitude response curve of the same
oscillator under pure-harmonic excitation.

Third, let us consider the effect of the amplitude of harmonic excitation on the stochastic
jump. Two joint probability densities for the same system as that shown in Figure 2 except
the amplitude of harmonic excitation are shown in Figures 8§ and 9. They are both unimodal
and so no jump may occur in these cases. This is also because these two cases shown in
Figures 8 and 9 are well off the frequency ratio interval of triple-valued amplitude, see
curves A and D in Figure 3. So, the bifurcation of the stochastic jump of a Duffing oscillator
under combined harmonic and white-noise excitations as the amplitude of harmonic
excitation changes can also be roughly estimated based on the amplitude response curves of
the same oscillator under pure harmonic excitation with different excitation amplitudes.

Finally, consider the effect of the strength of non-linearity on the stochastic jump. The
two joint probability densities for the same system as that shown in Figure 2 except the
strength of non-linearity are shown in Figure 10 and 11. They are unimodal and so no jump
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Figure 7. Stationary probability density p(a, y) of system (38). « =03, f =01, ® =10, 2=11, E=02,
D, = 0004, D, = 00 (a) by the stochastic averaging and path integration; (b) from the digital simulation of

equation (38).

may occur. These two cases are also not within the frequency ratio interval of triple-valued
amplitude, see curves E and C in Figure 3. So, the bifurcation of the stochastic jump of
a Duffing oscillator under combined harmonic and white-noise excitations as the strength
of non-linearity changes can also be roughly estimated based on the amplitude response
curve of the same oscillator under pure harmonic excitation with different strength of
non-linearity.

In the above examination of stochastic jump and its bifurcation, both harmonic and
white-noise excitations are external. A stationary joint probability density of amplitude and
phase of the Duffing oscillator under both external harmonic excitation and parametric
white-noise excitation is shown in Figure 12, where the values of system parameters are the
same as those in Figure 2 except white-noise excitation. It is seen from Figure 12 that both
the densities from the stochastic averaging and path integration and from digital simulation
are bimodal and thus jumps may occur in the system. It is also seen from the comparison
between Figures 12(a) and 12(b) that the combination of the stochastic averaging and path
integration still work well in this case.
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equation (38).

7. CONCLUDING REMARKS

In the present paper, a stochastic averaging procedure for strongly non-linear oscillators
under external and (or) parametric excitations of both harmonic and white-noise forces has
been developed by using the generalized harmonic functions. The procedure has been
applied to a Duffing oscillator with hardening stiffness under combined externally
harmonic excitation and externally and parametrically white-noise excitations. The
averaged FPK equation has been solved numerically by using the technique of path
integration and the results have been verified by those from the digital simulation of original
equation. Based on the stationary joint probability densities of amplitude and phase
obtained from the stochastic averaging and path integration and those from the digital
simulation of original equation, the stochastic jump of a Duffing oscillator under combined
harmonic and white-noise excitations and the bifurcation of the stochastic jump as the
system’s parameters change have been examined in detail. It has been shown that the
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Figure 9. Stationary probability density p(a,y) of system (38). « =03, f =01, ® =10, 2 =12, E=03,
D, = 0004, D, = 0-0 (a) by the stochastic averaging and path integration; (b) from the digital simulation of

equation (38).

stochastic jump is essentially a transition from one more probable motion to another or vice
versa and it is related to bimodal joint probability density. It has also been shown that the
bifurcation of the stochastic jump as the frequency ratio, the amplitude of harmonic
excitation and the strength of non-linearity change can be roughly estimated based on the
amplitude response curves of the same oscillator with appropriate parameter values under
pure harmonic excitation.

The proposed stochastic averaging method is applicable to the case of asymmetrical
excitation and response and thus it may be applied to study the non-conventional stochastic
resonance [42]. However, to obtain the concrete conclusion much work has to be done. The
level of excitation intensity at which the proposed method is applicable depends on the
system studied. For the system governed by equation (38), it is expected that the proposed
method works well for the white-noise intensity less than 0-05.
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Figure 10. Stationary probability density p(a,y) of system (38). « =02, f =01, o =10, 2 =12, E=02,
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equation (38).
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